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It has been reported that the number of transcription factors
encoded in prokaryotic genomes scales approximately quadrati-
cally with their total number of genes. We propose a conceptual
explanation of this finding and illustrate it using a simple model in
which metabolic and regulatory networks of prokaryotes are
shaped by horizontal gene transfer of coregulated metabolic
pathways. Adapting to a new environmental condition monitored
by a new transcription factor (e.g., learning to use another nutri-
ent) involves both acquiring new enzymes and reusing some of the
enzymes already encoded in the genome. As the repertoire of
enzymes of an organism (its toolbox) grows larger, it can reuse its
enzyme tools more often and thus needs to get fewer new ones to
master each new task. From this observation, it logically follows
that the number of functional tasks and their regulators increases
faster than linearly with the total number of genes encoding
enzymes. Genomes can also shrink, e.g., because of a loss of a
nutrient from the environment, followed by deletion of its regu-
lator and all enzymes that become redundant. We propose several
simple models of network evolution elaborating on this toolbox
argument and reproducing the empirically observed quadratic
scaling. The distribution of lengths of pathway branches in our
model agrees with that of the real-life metabolic network of
Escherichia coli. Thus, our model provides a qualitative explanation
for broad distributions of regulon sizes in prokaryotes.

functional genome analysis � horizontal gene transfer �
transcriptional regulatory networks

Biological functioning of a living cell involves coordinated activ-
ity of its metabolic and regulatory networks. Although the

metabolic network specifies which biochemical reactions the cell is,
in principle, able to carry out, its actual operation in a given
environment is orchestrated by the transcription regulatory net-
work through up- or down-regulation of enzyme levels. A large size
of the interface between these 2 networks in prokaryotes is indi-
cated by the fact that nearly half of transcription factors in Esche-
richia coli have a binding site for a small molecule (1), which
implicates them (2) as potential regulators of metabolic pathways.
This interface is further increased when one takes into account two
component systems whose sensors bind to small molecules and only
then activate a dedicated transcription factor. Thus, at least in
prokaryotes, regulation of metabolism occupies the majority of all
transcription factors.

Two recent empirical observations shed additional light on
evolutionary processes shaping these 2 networks:

Y The number of transcriptional regulators is shown to grow faster
than linearly (3–6) [approximately quadratically (4)] with the
total number of proteins encoded in a prokaryotic genome.

Y The distribution of sizes of coregulated pathways (regulons),
which in network language correspond to out-degrees of tran-
scription factors in the regulatory network, has long tail (7). As
a result, the set of transcription factors of each organism includes
few global (‘‘hub’’) regulators controlling hundreds of genes,
many local regulators controlling several targets each, and all
regulon sizes in-between these 2 extremes.

A simple evolutionary model explains both these empirical
observations in a unified framework based on modular functional
design of prokaryotic metabolic networks and their regulation.

Toolbox View of Metabolic Networks
Metabolic networks are composed of many semiautonomous func-
tional modules corresponding to traditional metabolic pathways (8)
or their subunits (9). Constituent genes of such evolutionary
modules tend to cooccur (be either all present or all absent) in
genomes (9, 10). These pathways overlap with each other to form
branched, interconnected metabolic networks. Many of these path-
ways/branches include a dedicated transcription factor turning them
on under appropriate environmental conditions. In prokaryotic
organisms there is a strong positive correlation between the number
of protein-coding genes in their genomes, the number of metabolic
pathways formed by these genes, the number of transcription
factors regulating these pathways, and, finally, the number of
environments or conditions that organism is adapted to live in.

We propose to view the repertoire of metabolic enzymes of an
organism as its toolbox. Each metabolic pathway is then a collection
of tools (enzymes), which enables the organism to use a particular
metabolite by progressively breaking it down to simpler compo-
nents, or, alternatively, to synthesize a more complex metabolite
from simpler ingredients. Adapting to a new environmental con-
dition e.g., learning to metabolize a new nutrient, involves acquiring
some new tools as well as reusing some of the tools/enzymes that
are already encoded in the genome. From this analogy it is clear that
as the genome of an organism grows larger, on average, it needs to
acquire fewer and fewer new tools to master each new metabolic
task. This is because the larger is the toolbox the more likely it is to
already contain some of the tools necessary for the new function.
Therefore, the number of proteins encoded in organism’s genome
is expected to increase slower than linearly with the number of
metabolic tasks it can accomplish. Or, conversely, the number of
nutrients an organism can use via distinct metabolic pathways is
expected to scale faster than linearly with its number of enzymes or
reactions in its metabolic network. This last prediction is empirically
confirmed by the data in the KEGG database (8): as shown in
supporting information (SI) Fig. S1, the best power-law fit to the
number of metabolic pathways vs. the number of metabolic reac-
tions in prokaryotic genomes has the exponent 2.2 � 0.2. This is in
agreement with quadratic scaling of the number of transcription
factors (4) if one assumes that most of these pathways are regulated
by a dedicated transcription factor.

Results
Evolution of Networks by Random Removal and Addition of Pathways.
We propose a simple model of evolution of metabolic and regula-
tory networks based on this toolbox viewpoint. The metabolic
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network of a given organism constitutes a subset of the ‘‘universal
biochemistry’’ network, formed by the union of all metabolites and
metabolic reactions taking place in any organism. An approxima-
tion to this universal biochemistry can be obtained by combining all
currently known metabolic reactions in the KEGG database (8).
The universal network used in our study formed by the union of all
reactions listed in the KEGG database is shown in Fig. S2. For
prokaryotes, entire metabolic pathways from this universal network
could be added by the virtue of horizontal gene transfer (HGT),
which according to ref 11 is the dominant form of evolution of
bacterial metabolic networks. Recent studies (12) reported a num-
ber of HGT ‘‘highways’’ or preferential directions of horizontal
gene transfer between major divisions of prokaryotes. As a result
of these and other constraints the effective size of the universal
network from which an organism gets most new pathways is likely
to deviate from the simple union of reactions in all organisms.
Metabolic networks can also shrink because of removal of path-
ways. This often happens when a nutrient disappears from the
environment of an organism over an evolutionary significant time
interval [see ‘‘use it or lose it’’ principle by Savageau (13)]. A
massive elimination of pathways occurs, e.g., when an organism
becomes an obligate parasite fully relying on its host for ‘‘prepro-
cessing’’ of most nutrients.

The state-of-the-art information on metabolic networks is not
adequate for a fully realistic modeling of their evolution. Fortu-
nately, faster-than-linear scaling of the number of pathways and
their regulators with the number of genes is the robust outcome of
the toolbox evolution scenario, and as such, it is not particularly
sensitive to topological structure of the universal biochemistry
network. In particular, we found (see Fig. S3) essentially identical
scaling in 2 models using 2 very different variants of the universal
biochemistry network:

Y the union of KEGG reactions (8) in all organisms (see Dataset
S1). A similarly sized universal network was used in ref. 29.
The part of this network connected to the biomass production
consists of Nuniv � 1,800 metabolites;

Y a random spanning tree on the fully connected graph of Nuniv
metabolites. Although certainly not realistic, this version is
mathematically tractable.

Furthermore, it turned out that many other details of pathway
acquisition process do not change scaling exponents of our model
(see Fig. S4). In the rest of this study we use the first universal
network (union of all KEGG reactions) in our numerical simula-
tions of the model and the second network in our mathematical
analysis.

Although the toolbox view of evolution is equally applicable to
catabolic (breakdown of nutrients) and anabolic (synthesis of
complex metabolites) pathways, for simplicity we will simulate only
addition and removal of catabolic branches. Given the repertoire of
enzymes of an organism each of the Nuniv universal metabolites can
be categorized as either ‘‘metabolizable’’ (connected to biomass
production), or ‘‘nonmetabolizable’’ (currently outside of the met-
abolic network). To add a new branch to the network in our model,
we first randomly choose a nonmetabolizable molecule as a new
nutrient (leaf). A pathway/branch that begins at the leaf and
connects it to the set of metabolizable molecules is then added to
the network. This connecting pathway consists of a linear chain of
reactions randomly selected from the universal network until it first
intersects with the already existing metabolic network of the
organism. The leaf plus all of the intermediate metabolites of this
branch thereby become metabolizable. This process is illustrated
in Fig. 1A.

In our model, pathway additions and removals are treated in a
symmetric fashion. The steps leading to pathway deletion are
illustrated in Fig. 1B. First, 1 of the leaves of the network corre-
sponding to a vanished nutrient is chosen randomly. The branch

starting at this nutrient/leaf is followed downstream to the point
where it first intersects another branch of the network. This
entire path, starting from the leaf down to the merging point with
another pathway is then removed from the network. The selected
nutrient along with all intermediate metabolites thereby become
nonmetabolizable.

The network in our model evolves by a random sequence of
pathway additions and removals (see Methods for more details).
Because our goal is to understand how properties of metabolic and
regulatory networks scale with the genome size of an organism, we
take multiple snapshots of the evolving network with different
values of Nmet—the current number of nodes in the metabolic
network, which in our model is equal to the number of reactions or
metabolic enzymes.

Assigning Transcriptional Regulators to Metabolic Pathways. Oper-
ation of metabolic networks involves regulating production of
enzymes in response to nutrient availability. In prokaryotes, most
of this regulation is achieved at the transcriptional level. To
investigate the interface between metabolic and regulatory net-
works, we extend our model to include transcription factors (TFs)
that are activated by nutrient availability to turn on or off the
enzymes in individual metabolic pathways. In the basic version of
our model shown in Fig. 2A, we chose the following simple method
to assign TFs to reactions: One randomly picks a leaf/nutrient and
follows its reactions downstream until this branch either reaches the
metabolic core or merges with a pathway regulated by a previously
assigned TF. A new TF is then assigned to regulate all reactions in
this part of the nutrient utilization pathway. This process is repeated
until all enzymes/reactions have been assigned a (unique) tran-
scriptional regulator. Each TF is activated by the presence of the
corresponding nutrient in the environment. Note that this method
results in exactly 1 TF per nutrient, and that the out-degree
distribution of TFs in the regulatory network is identical to the
distribution of branch lengths in the metabolic network.

In addition to this simple regulatory network architecture, we
have tried several others illustrated in Fig. 2 B–D. The advantage
of these more complicated schemes is that they ensure that on/off
states of connected metabolic pathways are properly coordinated
with each other. For example, unlike in Fig. 2A, in Fig. 2 B–D, the
transcription factor of the red pathway (TF2) turns on the down-
stream (and only the downstream) part of the blue pathway
necessary for utilization of the red nutrient. We will further
compare network topologies generated by these rules in Discussion.

Addition of new pathway:

Removal of pathway:

B

A

Fig. 1. ‘‘Toolbox’’ rules for evolving metabolic networks in our model. (A)
Additionofanewmetabolicpathway(red)that is longenoughtoconnectthered
nutrient to a previously existing pathway (blue) that further converts it to the
central metabolic core (dark green). (B) Removal of a part of the blue pathway
after loss of the blue nutrient. The upstream portion of the blue pathway that is
no longer required is removed down to the point where it merges with another
pathway (red). The light green circle denotes all metabolites in the universal
biochemistry network from which new pathways are drawn.
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Comparison of the Model with Empirical Data. In agreement with the
toolbox argument outlined in the Introduction, we found (see Fig.
4A) that the number of transcriptional regulators of an organism
scales steeper than linearly with the total number of metabolites in
its metabolic network, which in our model is equal to its number of
reactions or enzymes:

NTF � �Nmet�
� [1]

The best fit has � � 1.8 � 0.2. In Fig. 4A we directly compare
numerical simulations of the toolbox model (red diamonds) to the
empirical scaling of the number of transcription factors with the
number of genes in all currently sequenced prokaryotic genomes
(green circles). To approximate the total number of genes Ngenes in
our model genome, we multiplied the number of metabolites/
reactions Nmet by a constant factor. The empirical value of the ratio
Nmet/Ngenes �0.2 was estimated as follows: Metabolic enzymes
constitute approximately a quarter of all genes in a prokaryotic
genome independent of its size (see blue line in figure 1A of ref. 4).
Because of the presence of isoenzymes, the number of different
reactions catalyzed by these enzymes (equal to the number of
metabolites Nmet in our model) is somewhat smaller and its average
value all currently sequenced prokaryotic genomes (14) is 20%. The
model results in Fig. 4 were simulated on the universal network
formed by the union of KEGG reactions in all organisms. However,
a model simulated on a random universal network of the same size
Nuniv � 1,800 produced essentially identical results (black crosses in
Fig. S3). This agreement indicates that the scaling between NTF and
Nmet for the most part is determined by just the number of universal
metabolites—Nuniv and is not particularly sensitive to the topology
of connections between them. On the other hand, we believe that
nearly precise agreement of the actual number of regulators in real
prokaryotic genomes and in the model is coincidental. Indeed, even
in prokaryotes, not all transcription factors are dedicated to regu-
lation of metabolic enzymes. This means that to represent all TFs
in the whole genome the number of metabolic TFs in our model has
to be multiplied by a currently unknown number. Furthermore, as
discussed in the beginning of the Results section the effective size
of the universal network for real-life horizontal transfer of meta-
bolic pathways is likely to be different from the union of all reactions
currently listed in KEGG. We still believe that the KEGG-based
universal network provides a correct order-of-magnitude estimate

of N
univ

. Hence, the approximate agreement between NTF vs. Ngenes
plots in our model and real prokaryotic genomes is an encouraging
sign.

In addition to providing an explanation to the quadratic scaling
between numbers of leaves and all nodes, our model nicely repro-
duces the large-scale topological structure of real-life metabolic
networks. An example of a metabolic network generated by the
toolbox model is shown in Fig. 3B. Its tree-like topology reflects our
simplification that each reaction converts a single substrate to a
single product. The network is hierarchical in the sense that smaller
linear pathways tend to be attached to progressively longer and
longer pathways until they finally reach the metabolic core. This
architecture is reminiscent of drainage networks in which many
short tributaries merge to give rise to larger rivers. For comparison,
in Fig. 3A we show a tree-like backbone (to match linear pathways
in our model) of the E. coli metabolic network (8, 14) of approx-
imately the same size as the model network in Fig. 3B. The details
of generating this backbone are described in Methods. The overall
topological structure of real and model networks clearly resemble
each other.

To better quantify this visual comparison in Fig. 4B, we compare
cumulative branch length distributions P (Kout � K) in our model
with Nmet � 400 (red diamonds for Nuniv � 1,800 and red squares
for Nuniv � 900) and in real metabolic network in E. coli of
comparable size (green circles). All 3 distributions are characterized
by a long power-law tail: P (Kout) � Kout

��. The best-fit value of the
exponent � � 2.9 � 0.2 is similar in model and real-life networks
and agrees with our analytical result � � 3 derived in the next
section. Furthermore, the data in our model simulated on a
truncated universal network with Nuniv � 900 (red squares in Fig.
4B calculated for the network shown in Fig. 3B) are in excellent
agreement with their real-life counterpart in E. coli (green circles
in Fig. 4B calculated for the green network in Fig. 3A) throughout
the whole range.

In Fig. S5 we compare distributions of regulon sizes (branch
lengths) in our model (red diamonds in Fig. 4B) and in the Regulon
database (15) including all presently known transcriptional regula-
tions in E. coli. One can immediately see that the tail of the
distribution in the Regulon database has the exponent � 2 and,
therefore, considerably broader than � � 3 in our model. There are
several possible explanations of this discrepancy: (i) coordination of
activity of different metabolic pathways with each other as shown

A B

C D

TF3

TF2

TF1

TF2

TF1

TF2

TF1

TF2

TF1

Fig. 2. Schematic diagrams illustrating several possible regulatory network
architectures for control of metabolic enzymes/pathways. Four panels corre-
spond to different versions of our model discussed in the article. (A) In the
basic model there is no coordination of activity between red and blue meta-
bolic pathways. (B–D) More realistic models include extra regulatory interac-
tions (purple dashed lines) and transcription factors (purple TF3 in D), ensuring
that only the part of the blue pathway necessary for utilization of the red
nutrient is turned on by the corresponding transcription factor (red TF2).

Fig. 3. Visual comparison of a real-life metabolic network with that gener-
ated by our model. (A) The backbone of the metabolic network in E. coli (8)
located upstream of the central metabolism (green). (B) A similarly sized
model network (red). Note the hierarchy of branch lengths in both images in
which shorter pathways tend to be attached to progressively longer pathways.
The branch length distributions in real and model networks are shown as
green circles and red squares in Fig. 4B.
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in Fig. 2 B–D inevitably increases out-degree of transcription factors
and gives rise to larger regulatory hubs; (ii) regulation of proteins
other than metabolic enzymes in the same regulon; (iii) an anthro-
pogenic effect in which better studied transcription factors included
in the Regulon database have larger-than-average out-degrees. In
Discussion, we return to comparison between real-life and model
regulatory networks in more detail.

Mathematical Derivation of Scaling Behavior in Toolbox Model. When
a new nutrient (leaf) is added to a network of size Nmet, the length
of the metabolic pathway required for its utilization is (on average)
inversely proportional to Nmet. This result is easy to show for a
mean-field version of the model on a randomly generated universal
network. In this case, each reaction in the new pathway has the same
probability p � Nmet/Nuniv to end in one of the Nmet currently
metabolizable molecules. The minimal pathway required for utili-
zation of the new nutrient involves only the reactions until the first
intersection with the already existing metabolic network. The
average length of such pathway is just the inverse of this probability:
1/p � Nuniv/Nmet. When this pathway is added, the number of
metabolizable molecules increases by �Nmet � Nuniv/Nmet and the
number of regulators increases by 1: �NTF � 1. In the steady state
of the model, removal of a branch produces the opposite result:
�Nmet � �Nuniv/Nmet, �NTF � �1. In both cases one has:

dNmet

dNTF
�

Nuniv

Nmet
[2]

the integration of which gives

NTF �
Nmet

2

2Nuniv
. [3]

Therefore, the quadratic scaling between NTF and Nmet naturally
emerges from our toolbox model.

Similar calculations allow one to derive the scale-free distribution
of branch lengths (regulon sizes) in our model:

N�Kout� � Kout
��. [4]

with � � 3. Indeed, the expected length of a newly added metabolic
pathway (or the out-degree of its regulator in transcription regu-
latory network shown in Fig. 2A) is Kout � Nuniv/Nmet. As the size
of the metabolic network increases, the length of each newly added
pathway progressively shrinks. If the network was monotonically
growing, longer pathways of length Kout � K were added at the time
when the number of metabolites was smaller than Nuniv/K or
equivalently the number of transcription factors was 	Nuniv/(2K2).
Therefore, P (Kout � K) � Nuniv/(2K2)/NTF or P (Kout � K) �
Nuniv/(NTFK3) so that � � 3 in Eq. 4. As evident from Fig. 4B, random
cycling through addition and removal of pathways in the steady
state of our model does not significantly change this exponent
with best fit value of � � 2.9 � 0.2 shown as solid line in Fig. 4B.

Discussion
Trends of Average in- and out-Degrees in the Regulatory Network as
a Function of Genome Size. As was pointed out by van Nimwegen (4,
16, 17) faster-than-linear scaling of the number of transcription
factors generates systematic differences in topology of transcrip-
tional regulatory networks as a function of genome size. Indeed, the
total number of regulatory interactions (edges between TFs and
their target genes) in a given organism can be written either as
Ngenes
Kin� if one counts the incoming regulatory inputs of all genes,
or as NTF
Kout� if one counts the regulatory outputs of all tran-
scription factors. Here, the brackets denote the average over a given
genome. Therefore, one always has

NTF

Ngenes
�


K in�


Kout�
. [5]

The empirical data (3, 4) indicate that the left-hand side of this
equation monotonically grows with genome size and is approxi-
mately proportional to Ngenes. Therefore, an increase in the number
of genes in larger genomes must be accompanied either by an
increase in average in-degree 
Kin� of all genes or by a decrease in
average out-degree 
Kout� of transcriptional regulators. The latter
trend is indirectly supported by the empirical observation (16) that
the average operon size (a lower bound on regulon size) is nega-
tively correlated with Ngenes. This trend also exists in our basic
model (Fig. 2A) in which Kout of transcription factors regulating
newly added metabolic pathways progressively decreases with
Nmet � Ngenes. Furthermore, another recent study (17) found no
systematic correlation between 
Kin� and Ngenes. This is the case in
our model in Fig. 2A where all enzymes representing the vast
majority of all proteins in our model have the same Kin � 1
independently of genome size. However, such complete lack of
coordination between different metabolic pathways is not realistic.
To correct this we explored several other regulatory network
architectures illustrated in Fig. 2 B–D. In all these models enzymes
are regulated by more than 1 transcription factor. Transcription
factors in the model in Fig. 2B ensure complete top-to-bottom
regulation of the entire pathway for utilization of each nutrient. In
this case centrally positioned metabolites have unrealistically large
in-degrees. Opposite to the basic model in Fig. 2A, the average
in-degree 
Kin� in Fig. 2B increases with Ngenes, whereas 
Kout�
remains constant. Real-life regulatory networks are likely to be
somewhere in-between these 2 extreme scenarios illustrated in Fig.
2 A and B.

Coordination of Activity of Upstream and Downstream Metabolic
Pathways. Converting a nutrient into biomass of an organism often
involves several successive pathways each regulated by its own
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Fig. 4. Scaling plots in real and model networks. (A) The number of transcrip-
tion factors scales approximately quadratically with the total number of genes in
real prokaryotic genomes (8, 27) (green) and our model (red) simulated on the
KEGG universal network with Nuniv � 1,800. The number of metabolic reactions
in the model was rescaled to approximate the total number of genes in a genome
(see Results for more details). Error bars correspond to data scatter in multiple
simulations of the model. The solid line with slope 2 is the best power-law fit to
the scaling in real prokaryotic genomes (the best fit to our model is 1.8 � 0.2),
whereas the dashed line with slope 1 is shown for comparison to emphasize
deviations fromlinearity. (B)Cumulativedistributionsofpathway/branch lengths
in the E. coli metabolic network (green circles) and our model of comparable size
(red symbols) have similar tail exponents. The negative slope of the best power-
law fit � � 1 � 1.9 � 0.2 (solid line) is consistent with our analytical result � � 3
(see text for details). The toolbox model with Nmet � 400 was simulated on
universal networks of KEGG reactions with Nuniv � 1,800 (red diamonds) and
Nuniv � 900 (red squares) nodes.

9746 � www.pnas.org�cgi�doi�10.1073�pnas.0903206106 Maslov et al.



transcription factor. States of activity of such pathways have to be
coordinated with each other. Our basic model illustrated in Fig. 2A
does not involve such coordination. In this model:

Y Transcription factors do not regulate other transcription factors.
This results in ‘‘shallow’’ transcriptional regulatory networks
consisting of only 2 hierarchical layers: the upper level including
all regulators, and the lower level including all workhorse pro-
teins (metabolic enzymes). Although this assumption in its pure
form is certainly unrealistic, it approximates the hierarchical
structure of real prokaryotic regulatory networks, which were
shown to be relatively shallow (7, 18, 19). That is to say, the
number of hierarchical layers in these networks was shown to be
smaller than expected by pure chance (19).

Y In the regulatory network shown in Fig. 2A every enzyme is
regulated by precisely 1 transcription factor. Once again this
feature, although obviously unrealistic, approximates topological
properties of real-life regulatory networks, e.g., one in E. coli. In
ref. 7, it was shown that in this network the in-degree distribution
peaks at 1 regulatory input per protein beyond which it rapidly
(exponentially) decays. This should be contrasted with a broad
out-degree (regulon size) distribution (7) that has a long power-
law tail reaching as high as hundreds of targets.

Several possible regulatory network architectures ensuring nec-
essary coordination of activity of upstream and downstream path-
ways are shown in Fig. 2 B–D. Models shown in Fig. 2 C and D solve
the coordination problem by adding regulatory interactions among
transcription factors. The positive regulation TF23 TF1 in Fig. 2C
ensures that the nutrient processed by the red pathway would be
converted to the central metabolism (dark green area) by the
downstream part of the blue pathway.* One problem with adding
the TF2 3 TF1 regulation is that it stimulates some unnecessary
enzyme production. Indeed, the presence of the red nutrient
triggers the production of enzymes of the entire blue pathway
including those located upstream of the merging point with the red
pathway that are not required for red nutrient utilization. To
eliminate this waste of resources, we added negative regulations of
these upstream enzymes by TF2 (see Fig. 2C). Other architectures
shown in Fig. 2 B and D instead of suppressing the upstream
enzymes of the blue pathway exclusively activate its downstream
enzymes. In Fig. 2B TFs regulate the entire length of the long path
from every leaf (nutrient) all of the way down to central metabo-
lism. Another option illustrated in Fig. 2D is to add a new TF (TF3)
activated by the TF2 to regulate only the downstream part of the
blue pathway. Even though the number of TFs in Fig. 2D is up to
2 times larger than the number of leaves in the metabolic network,
we have verified that their quadratic scaling remains unchanged.

Transcription regulatory networks are also characterized by a
large number of feed-forward loops (18). It has been also conjec-
tured (18) that some of them serve as low-pass filters buffering
against transient fluctuations in nutrient availability. Such loops
could be easily incorporated in our models. One possibility would
be to add regulatory interaction between TF2 and TF1 in Fig. 2B.
For the model in Fig. 2D one might extend the range of TF2 to
include at least part of the targets of TF3 and/or add a regulatory
interaction between TF1 and TF2. Our simulations of models in
Fig. 2 B–D indicate that they all give rise to very long regulons. The
distribution of regulon sizes of these models shown in Fig. S6 has
a tail significantly broader than the one empirically observed in E.
coli (15). A detailed study of regulatory network architectures used

by real-life prokaryotes to ensure coordination of activity of their
metabolic pathways goes beyond the scope of this study and will be
addressed in our future research.

Prokaryotic Genomes Are Shaped by Horizontal Gene Transfer and
Prompt Removal of Redundant Genes. The horizontal gene transfer
(HGT) of whole modules of functionally related genes from other
organisms is the likely mechanism by which new pathways are added
to the metabolic network in our model. Indeed, the rules of our
model imply that an organism acquires all of the enzymes necessary
to use a new nutrient not one by one but in one step. Indeed, a
pathway converting a nutrient to a downstream product that is
disconnected from the rest of the metabolic network does not contrib-
ute to biomass production and thus confers no evolutionary advantage
to the organism. The dominant role of HGT in shaping contents of
prokaryotic genomes in general and their metabolic networks in
particular is well documented (21). For example, a recent empirical
study (11) reports that horizontally transferred enzymes

Y Outnumber duplicated enzymes during the last 100 million years
in evolution of E. coli.

Y Frequently confer condition-specific advantages, facilitating ad-
aptation to new environments. As a consequence, horizontally
transferred pathways tend to be located at the periphery of the
metabolic network rather than near its core.

Y tend to come in functionally coupled groups (see also ref. 9 for
a genome-wide analysis of this trend).

These empirical observations make the central assumptions of
our model all the more plausible. Another feature the evolution of
prokaryotic genomes used in our model is their tendency to
promptly remove redundant genes. Indeed, in our model we
implicitly assume that if a set of horizontally transferred genes
contains some enzymes that are already encoded in the genome,
these redundant copies are promptly removed. Terminating the
added metabolic branch precisely at the intersection point with the
existing metabolic network corresponds to the instantaneous re-
moval of these redundant genes. We verified that this simplification
could be relaxed without changing scaling exponents of the model.
This is demonstrated in Fig. S4, where we simulated a version of our
model assuming more realistic finite rate of removal of extra copies
of genes.

Both these features (massive horizontal gene transfers and
prompt removal of redundant genes) are not characteristic of
eukaryotic genomes in general, and those of multicellular organ-
isms in particular. That is consistent with our finding of approxi-
mately linear scaling of NTF with Ngenes in genomes of animals (see
Fig. S7 where the best-fit exponent 1.15 � 0.2). The best-fit
exponent for all eukaryotic genomes [1.3 � 0.2 (4)] is marginally
higher and is still much lower than its value in prokaryotes
(2.0 � 0.2).

Several earlier modeling efforts (4, 22, 23) explained the qua-
dratic scaling in terms of gene duplications followed by divergence
of the resulting paralogs. Models of this type assume that additions
and deletions of individual genes are, to a large degree, decoupled
from their biological function. Conversely, our model is, to the best
of our knowledge, the first attempt to explain this scaling relation
in purely functional terms. Instead of single genes we add and delete
larger functional units (metabolic pathways) and assume that they
are retained by evolution only if they positively contribute to the
functioning of the organism, that is to say if they get connected to
its biomass production through the existing metabolic network.
Also, contrary to earlier explanations (4, 22, 23), our toolbox model
relies on a different evolutionary mechanism (HGT vs. gene
duplications) that is predominant in prokaryotes.

How Quickly Do New Pathways Acquire Transcriptional Regulators? In
our model we assume that the regulatory network closely follows
changes in the metabolic toolbox of the organism. For the sake of

*Note that in biosynthetic (anabolic) pathways the direction of metabolic flow is opposite
to that in a nutrient-utilization (catabolic) pathways used in our illustrations (Fig. 2 A–D).
As a result, the direction of regulatory interactions between transcription factors should
be reversed as well. Thus, in biosynthetic pathways one expects more centrally positioned
regulator with larger out-degree to regulate its more peripheral (and less connected)
counterparts as is known to be the case e.g., in the leucine biosynthetic pathway (see ref.
20 and references therein).
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convenience in our simulations, we choose to assign regulators de
novo to each new state of the metabolic network. To verify that this
simplification does not distort our final results, we studied a variant
of our model in which the transcriptional regulatory network
dynamically follows changes in the metabolic network. The regulon
size distribution in this model was essentially unchanged from the
case where regulators were assigned de novo.

Such nearly immediate assignment of regulators to newly ac-
quired pathways is supported by the empirical study of Price and
collaborators (24) reporting that horizontally transferred peripheral
metabolic pathways frequently include their own transcriptional
regulators. This should come as no surprise, given many well known
cases where metabolic enzymes and their regulators either belong
to the same operon or are located very close to each other on the
chromosome (as, e.g., the Lac repressor and the Lac operon). Our
model is also full consistent with the selfish operon theory (25)
stating that genomic proximity of functionally related genes is
favored by evolution because it increases the likelihood of a
successful horizontal transfer of a fully functional pathway.

Overall, the emerging consensus (26) is that regulatory networks
in prokaryotic genomes are flexible, quickly adaptable, and rapidly
divergent even between closely related strains. Thus, even in cases
when a horizontally transferred pathway does not include a dedi-
cated transcriptional regulator it could nevertheless be quickly
acquired in a separate HGT event or created by gene duplication
of another TF in the genome.

Materials and Methods
Numerical Simulations of the Model. The metabolic network in our model is
shaped by randomly repeating pathway addition and pathway removal steps.
The boundary conditions for this stochastic process do not allow the number of
metabolites to fall below 40 or exceed �1,600. Networks with different values of
Nmet are then sampled and analyzed. The universal network used in our study
consists of the union of all reactions listed in the KEGG database (8). The direc-
tionality of reactions and connected pairs of metabolites are inferred from the
map version of the reaction formula: ftp.genome.jp/pub/kegg/ligand/reaction/
reaction�mapformula.lst.Becauseourgoal is tomodeltheconversionofnutrients
to organism’s biomass, we kept the metabolites located upstream of the central
metabolism (reachable by a directed path from Pyruvate). This left us with 1,813
metabolites connectedby2,745edges.Theexact sizeandtopological structureof
the universal network is not known. To test our model on a universal network of
a different size (red squares in Fig. 4B) we pruned the KEGG network down to
�900metabolites.Thispruningwasachievedbyrandomlyremovingnodesalong
with branches that got disconnected from the central metabolism. In yet another
version shown in Fig. S3, the universal network linear branches were formed by

random walks on the fully connected graph of Nuniv � 1,800 metabolites. The
metabolic network of an organism changes by:

1) Pathway addition. A new leaf (nutrient) is randomly chosen among all
currently nonmetabolizable nodes and a self-avoiding random walk on the
universal network. This directed walk is started at the leaf and extended until it
first intersects the subset of Nmet presently metabolizable molecules. The leaf plus
all of the intermediate metabolites of this new branch thereby become metab-
olizable.

2) Pathway deletion. One of the NTF network leaves (nutrients) is chosen
randomly. The links downstream from this leaf are followed until the first
merging point of 2 metabolic branches. All of the metabolites down to this
merging point are removed from the network, thereby becoming
nonmetabolizable.

We typically choose to begin all simulations with 20 nodes in the ‘‘metabolic
core’’ (the dark green central circle in Figs. 1 and 2) that are already metaboliz-
able. This core could be thought of as the ‘‘universal central metabolism’’ present
in most organisms. The number of these core metabolites, Ncore, is the second
parameter of our model. However, in practice, as long as Ncore 		 Nuniv, the
network topological structure in the steady state does not depend on the value
of Ncore. In our simulations we also tried different starting sets of metabolizable
molecules connected by linear branches to the core but inevitably arrived to the
statistically identical steady-state networks.

Sources of Empirical Datasets. The distribution of branch lengths in Fig. 2A was
calculated as follows: First a leaf was randomly chosen and followed to the
metaboliccore.Subsequentbrancheswerefolloweduntil themergingpointwith
another branch that was previously selected. In the metabolic network of the
K-12 strain of E. coli leaves were defined as either (i) having zero in-degree (no
production within the organism) or (ii) having an undirected degree of 1 (end
points of linear branches formed by reversible reactions). The backbone of the E.
coli network was defined by following random linear paths starting at these
leaves and ending at the intersection with each other or at the metabolic core.
This left us with the network in Fig. 3A of �420 metabolite nodes (including 112
leaves) located upstream of the central metabolism (8).

To estimate the number of transcription factors in different genomes
shown in Fig. 4A (green symbols), we used the DBD database (27) (www.
transcriptionfactor.org) with its manually curated list of 147 Pfam families of
transcription factors. The resulting values of NTF are in good agreement with
those obtained in earlier studies (3–6).
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